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curve or horizontally refract. As a result, determination of
source location (bearing, distance, and depth) can be affect-
ed. Environments that can be represented by such wedgelike
conditions include the ocean overlying the continental slope
in our experimental test region off the east coast of Australia.

The existence of significant horizontal refraction in the
ocean has been debated for many years but has never been
experimentally confirmed with directional receivers. Hori-
zontal refraction requires repeated bottom reflections. Some
have argued that in shallow water such an effect would not
be measured because the energy would be transmitted into
the bottom. However, transmission into the bottom occurs
at relatively larger grazing angles, i.e., angles greater than
the compressional critical angle which in sandy near-shore
environments is normally around 30°.

In this article we will begin with a section on the experi-
ment and its results, followed by a section discussing the
models used. Next, we will interpret the experimental results
in light of the modeling predictions and finally complete this
article with a section of conclusions and future efforts.
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FIG. 1. Example of a ray launched obliquely upslope and displaying hori-
zomtal refraction as a result of repeated reflections off a sloping bottom.
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FIG. 2. The general region of the 1984 test off the east coast of Australia.
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FIG. 3. A detailed look at the ocean environment in the experimental area.
(a) A vertical cross section showing representative bottom slopes and bot-
tom layering; (b) selected bottom depth contours showing bathymetry for
the experimental area with tracks indicating source and receiver ship paths
over the 4.5 h of the run.
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1500, 2000, 2500, and 3000 m) and the tracks for source S
and receivers R during the 4.5-h test. Measured average bot-
tom slopes varied from 0.43° (very near shore) to 17.1° (50
km from shore), and we note that the bottom topography is
smooth early in the run but becomes irregular later.

The experiment consisted of two ships initially 34 km
apart, and 30 km from shore. One ship was in water 400 m
deep and towing a 152-Hz cw sound source at ~ 80-m depth,
and the other in water 520 m deep and towing a horizontal
array of sensors at =~ 60-m depth. Each ship proceeded out to
deeper water on diverging paths but on courses chosen so
that both ships remained equidistant from shore, and so that
source ship direction and array direction remained nearly
parallel (see Fig. 4). The ship towing the array had a resul-
tant heading nearly due east at about 1.5 kn considering a
local current nearly due south at 2 kn. This current was
assumed to be uniform and resulted in a final array heading
of 38° where depth sensors confirmed the horizontal attitude
of the array, and examination of additional data (not report-
ed here) confirmed its linear configuration. Navigation was
kept by both sATNAV systems and by triangulation with
known points on shore, and the run lasted 4.5 h. Although
we will display the full 4.5 h of these data, we will model and
discuss only the first half hour of it (data will be labeled from
00:30 through 01:00) when the bottom over which the sound
propagated can be regarded as essentially smooth.

By combining (beamforming) the signals received at
each acoustic sensor the angle of arrival for the acoustic en-
ergy received from the source could be estimated. Both con-
ventional and minimum variance (MV) algorithms were ap-
plied. The latter has the advantage of suppressing (a)
sidelobe interference, and (b) broadband noise including
towship interference when spatially prewhitened.? Thus, for
MYV, all energy seen results from the narrow-band signal.
Figure 5 (produced with MV processing where each hori-
zontal trace represents a 2-min average) shows the arrival
angles as a function of time where the top of the trace corre-
sponds to the beginning of the run. Without horizontal re-
fraction, the energy would be expected to arrive at the array
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FIG. 4. Geometry of the experiment at the beginning of the run.
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FIG. 5. Bearing-time trace for the acoustic signal at the array of acoustic
sensors. These data represent 4.5 h of data beginning at the top where the
ships are least scparated and nearest shore. Only the earliest data from 00:30
to 01.00 are modeled. Highest energy levels ure shown in white with the
scale shown in the upper right (8 dB from wh te to black). The white dots
show the arrival angle of energy expecled in the absence of horizonial re-
fraction.

at a nearly constant 38" angle from endfire, and the white
dots show the exact arrival angle of energy expected in the
absence of both vertical and horizontal refraction. At the
beginning of the run at time 00:30, energy arrives at approxi-
mately 40° while at later times such as 01:00 we sce vivid
evidence of horizontal refraction with some arrivals at ~88°,
i.e., nearly broadside (90°) to the array.

I1. MODELS

The problem of modeling underwater acoustic propaga-
tion in various ocean environments has been extensively
studied over the years, and consequently many approaches
have been developed to deal with it. Some of these ap-
proaches are restricted to one-dimensional variations in geo-
physical parameters, i.e., depth stratified media. They in-
clude normal mode theory* and a program (FFP)* for the
evaluation of the associated Green's function integral. Al-
though these methods can allow consideration of general
impedance type boundary conditions (often used for model-
ing the effects of rough surfaces) and/or elastic, layered
ocean bottoms, they cannot deal with even the simplest two-
dimensional (2-D) problem in a wedge-shaped ocean. How-
ever, there are other approaches that can deal with certain
cases of the more complex enviconments described by depth
and range variations. These approaches include adiabatic’ °
and coupled mode'™'" theories, extended ray theory,'>'* a
hybrid ray-mode theory,'s a Green’s function extension of
image theory,"'® numerical solutions of the Helmholtz equa-
tion,"” and theories based on parabolic equation (PE) ap-
proximations ' to the Helmholtz equation. Unfortunate-
ly, the specific models referenced above all presently either
require azimuthal symmetry about the source (for a sloping
bottom they describe propagation up the side of a circular
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depression or down a seamount), or they require complete
independence transverse to the slope, i.e., a line source paral-
lel to the apex. Such models can lead to some insights in the
simplest wedge problem, i.e., for propagation directly up or
down the slope. However, in the final analysis very few mod-
els are currently available which can deal with a fully 3-D
underwater environment or even with a point source in a
wedge environment. The theory of intrinsic modes?? applied
to the wedge problem is currently under development but
has not yet been used to compute fully 3-D results for a point
source. Additionally, a ray-theoretic model*2->* has been de-
veloped which, unfortunately, does not yet compute field
strength, and a 3-D PE model using a multifaceted bot-
tom?*?” has also been developed (which is not currently
available as it has not yet been converted for use on existing
computer systems).

Ideally, one would like to go beyond the high-frequency
restriction inherent in a ray-theoretic approach and to avoid
the forward propagation angle limitations and the “no back-
scatter” assumptions of a PE approach. For a point source in
an idealized wedge-shaped ocean environment bounded by
perfectly soft surfaces, there is an exact mode-theoretic mod-
el available. This solution can give important insights about
horizontal refraction for our problem and will be analyzed
and discussed next.

An exact solution for the complex acoustic field of a
point source in a perfectly reflecting wedge for constant
sound speed was developed in terms of normal coordinates
in 1957.*2 This solution expresses the field as a sum of
normal modes whose amplitudes are expressed as double,
infinite integrals involving Bessel and trigonometric func-
tions. These expressions simplify exactly to simple trigono-
metric and exponential functions in the case of an impulsive
source and include any diffraction effects present. More-
over, these expressions can be interpreted in terms of image
sources. For a ¢cw (time harmonic) source Buckingham, in
1984,***" applied a Hankel transform to the Helmholtz
equation and was able to express the solution as a sum of
normal modes whose amplitudes were given by finite, single
integrals, although, of highly oscillatory functions. In partic-
ular, his solution for the velocity potential ¢ with pressure-
release boundaries, unit source strength, and for the geome-
try shown in Fig. 6 is given by

q;:-61—zI‘,(r,r’,z)sin(vﬂ)sin(vﬁ'), (N
0 v
where
" —_ I —_—
I, = 1 f cos(vx) exp( lkRL\/} Zicosx) dx,
TRy Jo J1—2a cos x
and

r isdistance from apex to receiver (not the same as what
we shall call range),

7 is distance from apex to source,

z is cross range from source to receiver,

0 1s angle from surface to receiver,

@' is angle from surface to source,

v = mm/8,is an integer,

m 1s the mode number,
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FIG. 6. Geometry of simple wedge with source at (#,0,0°) and receiver at
(72,8). The cross range or z axis runs along the apex while the range axis
runs transverse to z toward deeper water. The depth coordinate corresponds
to &€ and the bottom slope is given by 6,.

#, is the bottom slope,
a=rr/R,

k is acoustic wavenumber for source energy.

Techniques for evaluating this solution have been dis-
cussed in Ref. 32, and evaluation by the stationary phase
method (found to be highly accurate in cases of interest
here) is presented in the Appendix of this article. The re-
quirement that v be an integer corresponds physically to the
case where there is no diffraction from the wedge apex (a
small effect for small angles). If v is not an integer then the
integral for the mode coefficient takes a slightly different
form from that given above.*? For our analysis (early in the
run) where the wedge angle is = 1.2° the difference between
solutions is negligible.

Let us consider the field given by Eq. (1). In particular,
assume the parameters appropriate to the experiment but for
a 10-Hz source so that we need only consider 5 modes at the
source (rather than the full 80), i.e., let 8, = 1.2°, bottom
depth at source =400 m (range = 19.1 km from apex}),
source depth = 80 m (the source is at a null for mode 5),
receiver depth = 60 m. For these parameters we see in Fig.
7(a) which shows the field amplitude (at the constant depth
of the receiver and as a function of range from the apex and
cross-range from the source) that the field has the pro-
nounced hyperbolic mode caustics as expected®' (one for
each of the four significant modes) and also shows circular
rings of alternating high and low amplitudes about the
source (as expected for a flat bottom which is what the slope
will effectively be in the nearfield). This display clearly
shows how a sloping bottom distorts the field, strongly af-
fects its directionality, and introduces new caustics. If we
increase the frequency [to 25 Hz, results seen in Fig. 7(b), to
50 Hz, seen in Fig. 7(c), and finally to 152 Hz, seen in Fig.
7(d)] these features become less obvious because of the in-
creasing number of modes leading to more complicated in-
terference patterns and because of the difficulty in sampling
the field in sufficient detail. However, the underlying physics

of the problem remains the same: The sloping bottom dis- the lower-order m i
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torts the field affecting its directionality and introducing
caustics.

If we also examine the behavior of the 10-Hz field as a
function of range and depth for cross ranges of 0 and 15 km
(see Fig. 8), we see the strong, indentifiable mode contribu-
tions at the mode caustics, e.g., mode 2 is very strong at a
range of approximately 7 km for cross range = 0, with the
structure shifting and stretching out as cross range increases.
Clearly, the field at points that are neither directly upslope
nor directly downslope from the source will not be accurate-
ly described by any 2-D model.

In addition to this mode theoretic approach (limited to
a simple, perfectly reflecting wedge), we have also consid-
ered an elementary ray trace model. This model allows the
user to select the vertical and horizontal launch angles of
interest where these rays are then propagated in a homogen-
eous medium (a constant index of refraction) with a multi-
faceted wedge bottom. These bottom facets are joined such
that the line of intersection is parallel to the apex and result
in a closer approximation to the test environment than the
simple, one facet wedge required by the mode theoretic ap-
proach. In addition to this feature, the ray model also allows
for consideration of sound transmission into the bottom.
This has been done here by considering a critical angle of 30°
as representative of the region. That is, rays hitting the bot-
tom at shallow angles, i.e., less than 30°, undergo total inter-
nal reflection and will continue to propagate. As a ray propa-
gates upslope, its grazing angle becomes steeper with
repeated bottom reflections and reaches a maximum at its
turning point. If the ray grazing angle reached 30° or greater
at any point on its path, then the ray is terminated. Qur ray
model has not been used to predict field intensity but rather
to compute the 3-D arrival angles of the rays/energy reach-
ing the array.

{Il. INTERPRETATIONS

Aspects of the experimental behavior have been qualita-
tively predicted by combining the idealized wedge solutions
[Eq. (1)] with ray theoretical predictions based on more
representative approximations of this environment, i.e., the
multifaceted bottom having a critical grazing angle of 30°. In
our attempts to correlate data with model predictions, we

_have restricted our analysis to only the early data, where the
bottom contours indicted smooth, well-behaved slopes [the
area to the left of a line joining the points S and R in Fig.
3(b)]. Qur procedure began with a mode theoretical simula-
tion of the acoustic field at 152 Hz at the array generated
using the ideal wedge solution with geometrical parameters
matching as closely as possible those at the beginning of the
experiment (see Table I). This complex field was then beam-
formed in the same manner as were the experimental data.
This led to results seen in Fig. 9 (constant over time since
only constant parameters were used) similar to those of the
data that we saw at the top of Fig. 5 where we saw energy
incident at 44°. We note the presence of additional energy
incident at higher discrete arrival angles corresponding to
high-order modes and to the highly refracted components of
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(d) 152 Hz.

have been indicated). Next, we examined the modal struc-
ture of this synthetic field (Fig. 10) and selected the stron-
gest modes for more detailed analysis. For those strong
modes (modes 3, 17, 22, 37, and 43) we then computed the
corresponding modal-ray angles a, where

2kh sin(a) = 2mm,
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and 4 is the water depth (m) and m is the mode number.
Next, we propagated these rays in the ray model dis-
cussed above beginning with the rays corresponding to mode
43 (vertical angle = 32°). Assuming only one bottom facet
and a nonabsorbing (perfectly reflecting) bottom, we found
that mode 43 resulted in energy arriving at the array at an-
gles 64.5° and 76.9° with the higher angle corresponding to
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provide an informative although incomplete description of
the acoustic field observed at the array. Thus there is a need
for a more general modeling capability that would predict,
with relative ease, the 3-D field in a complicated ocean envi-
ronment (nonplanar boundaries, penetrable lossy bottom,

TABLE II. Predicted arrival angles of energy at 00:30. Data: 44 deg.

and nonuniform refractive index). This is particularly true
now that energetic horizontal refraction in the ocean has
been confirmed experimentally.

Future efforts are aimed at extending the analysis of

TABLE [I1. Predicted arrival angles of energy at 01.00. Data: 48-58, 63-88
deg.

3-D arrival angle

3-D arrival angle Major mode (degrees)
Major mode (degrees)
10 44
k) 40 18 47
17 T 46 33 64
22 51 35 66
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experimental data to the later times shown and to expand the
present mode theoretic approach to allow for a penetrable
bottom.
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APPENDIX
The basic integral I to be evaluated here is given by
T — 3 _
I— j cos(vx)exp[ — ikRy1 — 2a cos(x) | dx
0 V1 —2acos(x)

=, +1.)/2,
where

(AD)

def T
I, = f A(x)e*Rup = Xglx (A2)
0
with

def
A(xy = 1/J1 =2a cos(x),
def
p+(x)=— [ +vx/(Rok) + 1 — 2a cos(x) ].

Then,
@' (X)= —[£v/(Rek) + asin(x)/
J1 —2acos(x) ] .

So, stationary points in [0,7] exist only for ¢ _ and are given
by

VvV + V' —k’R3 (v — 2’k R )

X, = arccos s .
ak’Rj;

(A3)

Thus using the basic first-order stationary phase evalua-
tion of the integrals /, (see Ref. 35, p. 387) we have, for
kR,— 0,

I, ~I%(kRy) + 12 (kRy),

where

(A4)

I#(kRy = — V2T
\/kR0|¢’ "lx g )|

xexp[ikRyp_(x, ) +isgng”(x, Yu/4],
(AS)

A(x, )
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are the contributions from the two stationary points x , ,
with
afcos(x) — a — a cos?(x))

(1 —2acos(x)]??

g x)=—

and

I £ (kRy) = —i(*®?+ "/ T o1 1 2a), (A6)
are the contributions from the endpoint at x = 7 (the contri-
butions from x = 0 cancel).

Also, we note that I (kR +1, (kRyp)

= 2(* RV +2a 4 1 4 Da)sin vr—0 if v is an integer, as
required here. Thus,

I~[1,;(kRy) + 1 (kRy)]/2. (A7)

It should be noted that the very small errors in this simple
stationary phase solution will increase as the two stationary
points coalesce (as at the caustics), or if one or both points
approach either endpoint. In those cases, the error can be
reduced by modifying the above approach as discussed in
Ref. 35. Such refinements were not required for our purposes
here.
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